Abstract

BackgroundCoronary artery perforation is a rare but potentially lethal complication of percutaneous coronary intervention (PCI) with an associated mortality of 7–17%. We report the case of coronary artery perforation complicating Absorb bioresorbable vascular scaffold (BVS) implantation and the associated technical challenges with managing this life-threatening complication.Case reportA 46-year-old male was referred to our institution and underwent PCI with an Absorb bioabsorbable vascular scaffold (BVS) to a proximal LAD long segment bifurcation lesion. Following pre-dilation and deployment of the 3.5 × 28 mm Absorb BVS, high pressure post-dilation of the distal scaffold was complicated by a large, Ellis type III coronary perforation with no flow to the distal LAD beyond the rupture, and associated with a large pericardial effusion confirmed on bedside transthoracic echocardiogram (TTE). The insult was temporised with prolonged balloon inflation within the Absorb BVS immediately proximal to the site of perforation, permitting urgent insertion of a pericardial drain. After deflation of the balloon, a 3.0 × 21 mm BeGraft covered stent was deployed across the perforation, restoring normal LAD flow and abolishing the perforation. Cardio-pulmonary resuscitation was not required and the patient remained conscious throughout the procedure. TTE demonstrated normal left ventricular function and the patient was discharged 3 days later. Repeat angiography at 3 months showed patent stents with TIMI III flow, and optical coherence tomography (OCT) showed good expansion and apposition of the proximal Absorb BVS and BeGraft. The patient has remained well 4 years after PCI with no major cardiovascular events.ConclusionThe utility of bioresorbable scaffold technology remains controversial although meticulous implantation techniques are associated with improved clinical outcomes. Adoption of the Pre-dilatation, Sizing and Post-dilatation (‘PSP’) method of BVS implantation with routine aggressive vessel preparation and scaffold optimization however may contribute to a higher risk of vessel perforation. The case emphasises the importance of accurate sizing of the vessel with intracoronary imaging and demonstrates the value of newer generation covered stents with single-layer design and slimmer crossing profile producing improved deliverability and procedural success.

Highlights

  • Coronary artery perforation is a rare but potentially lethal complication of percutaneous coronary intervention, with the overall incidence ranging from 0.19 to 0.59% [1]Chen et al BMC Cardiovascular Disorders (2022) 22:66 and an associated mortality of 7–17% [2]

  • Adoption of the Pre-dilatation, Sizing and Post-dilatation (‘PSP’) method of bioresorbable vascular scaffold (BVS) implantation with routine aggressive vessel preparation and scaffold optimization may contribute to a higher risk of vessel perforation

  • The case emphasises the importance of accurate sizing of the vessel with intracoronary imaging and demonstrates the value of newer generation covered stents with single-layer design and slimmer crossing profile producing improved deliverability and procedural success

Read more

Summary

Conclusion

The utility of bioresorbable scaffold technology remains controversial meticulous implantation techniques are associated with improved clinical outcomes. Adoption of the Pre-dilatation, Sizing and Post-dilatation (‘PSP’) method of BVS implantation with routine aggressive vessel preparation and scaffold optimization may contribute to a higher risk of vessel perforation. The case emphasises the importance of accurate sizing of the vessel with intracoronary imaging and demonstrates the value of newer generation covered stents with single-layer design and slimmer crossing profile producing improved deliverability and procedural success

Introduction
Discussion and conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call