Abstract

Introduction18F-Sodium Fluoride Positron Emission Tomography (18F-NaF PET) is a novel molecular imaging modality with promise for use as a risk stratification tool in cardiovascular disease. There are limitations in the analysis of small and rapidly moving coronary arteries using traditional PET technology. We aimed to validate the use of a motion correction algorithm (eMoco) on coronary 18F-NaF PET outcome parameters. MethodsPatients admitted with an acute coronary syndrome underwent 18F-NaF PET and computed tomography coronary angiography. 18F-NaF PET data were analyzed using a diastolic reconstruction, an ungated reconstruction and the eMoco reconstruction. ResultsTwenty patients underwent 18F-NaF PET imaging and 17 patients had at least one positive lesion that could be used to compare PET reconstruction datasets. eMoco improved noise (the coefficient of variation of the blood pool radiotracer activity) compared to the diastolic dataset (0.09 [0.07 to 0.12] vs 0.14[0.11 to 0.17], p < .001) and marginally improved coronary lesion maximum tissue-to-background ratios compared to the ungated dataset (1.33 [1.05 to 1.48]vs 1.29 [1.04 to 1.40], p = .011). ConclusionIn this pilot dataset, the eMoco reconstruction algorithm for motion correction appears to have potential in improving coronary analysis of 18F-NaF PET by reducing noise and increasing maximum counts. Further testing in a larger patient dataset is warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.