Abstract

Little is known about the impact of type 2 diabetes mellitus (DM) on coronary arteriole remodeling. The aim of this study was to determine the mechanisms that underlie coronary arteriole structural remodeling in type 2 diabetic (db/db) mice. Passive structural properties of septal coronary arterioles isolated from 12- to 16-week-old diabetic db/db and control mice were assessed by pressure myography. Coronary arterioles from 12-week-old db/db mice were structurally similar to age-matched controls. By 16weeks of age, coronary wall thickness was increased in db/db arterioles (p<0.01), while luminal diameter was reduced (control: 118±5μm; db/db: 102±4μm, p<0.05), augmenting the wall-to-lumen ratio by 58% (control: 5.9±0.6; db/db: 9.5±0.4, p<0.001). Inward hypertrophic remodeling was accompanied by a 56% decrease in incremental elastic modulus (p<0.05, indicating decreased vessel coronary wall stiffness) and a ~30% reduction in coronary flow reserve (CFR) in diabetic mice. Interestingly, aortic pulse wave velocity and femoral artery incremental elastic modulus were increased (p<0.05) in db/db mice, indicating macrovascular stiffness. Molecular tissue analysis revealed increased elastin-to-collagen ratio in diabetic coronaries when compared to control and a decrease in the same ratio in the diabetic aortas. These data show that coronary arterioles isolated from type 2 diabetic mice undergo inward hypertrophic remodeling associated with decreased stiffness and increased elastin-to-collagen ratio which results in a decreased CFR. This study suggests that coronary microvessels undergo a different pattern of remodeling from macrovessels in type 2 DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.