Abstract
In this paper, we analyze 91 coronal mass ejection (CME) events studied by Manoharan et al. (2004) and Gopalswamy and Xie (2008). These earth-directed CMEs are large (width > 160 ∘ ) and cover a wide range of speeds ( ∼ 120 – 2400 km s − 1 ) in the LASCO field of view. This set of events also includes interacting CMEs and some of them take longer time to reach 1 AU than the travel time inferred from their speeds at 1 AU. We study the link between the travel time of the CME to 1 AU (combined with its final speed at the Earth) and the effective acceleration in the Sun–Earth distance. Results indicate that (1) for almost all the events (85 out of 91 events), the speed of the CME at 1 AU is always less than or equal to its initial speed measured at the near-Sun region, (2) the distributions of initial speeds, CME-driven shock and CME speeds at 1 AU clearly show the effects of aero-dynamical drag between the CME and the solar wind and in consequence, the speed of the CME tends to equalize to that of the background solar wind, (3) for a large fraction of CMEs (for ∼ 50 % of the events), the inferred effective acceleration along the Sun–Earth line dominates the above drag force. The net acceleration suggests an average dissipation of energy ∼ 10 31 – 32 ergs, which is likely provided by the Lorentz force associated with the internal magnetic energy carried by the CME.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.