Abstract
Coronal dimming can be considered to be a disk signature of front-side coronal mass ejections (CMEs) (Thompson et al.: 2000, Geophys. Res. Lett.27, 1431). The study of the magnetic connectivity associated with coronal dimming can shed new light on the magnetic nature of CMEs. In this study, four major flare-CME events on 14 July 2000, 28 October 2003, 7 November 2004, and 15 January 2005 are analyzed. They were all halo CMEs associated with major flare activity in complex active regions (ARs) and produced severe space weather consequences. To explore the magnetic connectivity of these CMEs, global potential-field extrapolations based on the composite synoptic magnetograms from the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory are constructed, and their association with coronal dimming is revealed by the Extreme ultraviolet Imaging Telescope. It is found that each flare-CME event involved interaction of more than ten sets of magnetic-loop systems. These loop systems occupied over 50% of all identified loop systems in the visible hemisphere and covered a wide range of solar longitudes and latitudes. We categorize the loop systems as active-region loops (ARLs), AR-interconnecting loops (ARILs) including transequatorial loops (TLs), and long arcades (LAs) straddling filament channels. A recurring pattern, the saddle-field configuration (SFC), consisting of ARILs, is found to be present in all four major flare-CME events. The magnetic connectivity revealed by this work implies that intercoupling and interaction of multiple flux-loop systems are required for a major CME. For comparison, a simple flare-CME event of 12 May 1997 with a relatively simple magnetic configuration is chosen. Even for this simple flare-CME event, we find that multiple flux-loop systems are also present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.