Abstract

Elemental abundances in the solar corona are known to be different from those observed in the solar photosphere. The ratio of coronal to photospheric abundance shows a dependence on the first ionisation potential (FIP) of the element. We estimate FIP bias from direct measurements of elemental abundances from soft X-ray spectra using data from multiple space missions covering a range of solar activity levels. This comprehensive analysis shows clear evidence for a decrease in FIP bias around maximum intensity of the X-ray flare with coronal abundances briefly tending to photospheric values and a slow recovery as the flare decays. The departure from coronal abundances are larger for the low FIP elements Ca, Fe and Si than for S which have a mid FIP value. These changes in the degree of fractionation might provide inputs to model wave propagation through the chromosphere during flares.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.