Abstract

Films made of Polymethylmetacrylate (PMMA) and doped with dipolar second order nonlinear optical chromophores were studied by UV-visible spectroscopy and transmitted resonant Second Harmonic Generation technique. The chromophores were non-centrosymmetrically oriented by a Corona poling field. The UV-visible spectra were measured in poled films at normal incidence as function of their poling temperatures (60, 80 and 100°C) and they were analyzed in terms of the Second Order Parameter (A 2 ). The Second Harmonic Generation (SHG) signals in the films were measured in-situ as function of the poling time at several incidence angles for each poling temperature. The stability of the SHG signal was also determined, by turning off the Corona field but leaving the films at their original poling temperature. The films were of two different kinds: amorphous and nanostructured. All the films doped simultaneously with chromophores and surfactants showed long-range ordered nanostructures. Two kinds of surfactants were used during the synthesis of the films: ionic and neutral, both of them induced long-range order in the structure of the PMMA, but only some of the nanostructured films exhibited enough large SHG signals. The second order nonlinear optical response of the nanostructured films was compared with the corresponding response of the amorphous films. The long-range order in the films was detected by X-Ray Diffraction (XRD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call