Abstract

We consider a four-vertex model introduced by Bálint Tóth: a dependent bond percolation model on ℤ2 in which every edge is present with probability 1/2 and each vertex has exactly two incident edges, perpendicular to each other. We prove that all components are finite cycles almost surely, but the expected diameter of the cycle containing the origin is infinite. Moreover, we derive the following critical exponents: the tail probability ℙ(diameter of the cycle of the origin >n)≈n−γ and the expectation $\mathbb{E}$ (length of a typical cycle with diameter n)≈nδ, with $\gamma=(5-\sqrt{17})/4=0.219\ldots$ and $\delta=(\sqrt{17}+1)/4=1.28\ldots$. The value of δ comes from a singular sixth order ODE, while the relation γ+δ=3/2 corresponds to the fact that the scaling limit of the natural height function in the model is the additive Brownian motion, whose level sets have Hausdorff dimension 3/2. We also include many open problems, for example, on the conformal invariance of certain linear entropy models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.