Abstract

This article presents a mathematical model of helical end-milling forces through experimental identification of the cutting coefficients and analyzes the changes of corner-milling forces under different conditions. In allusion to the corner-milling process, the relationship between working parameters and the corner coordinates is investigated by way of combination of tool tracing and cutting geometrodynamics. The milling parameters are optimized by changing the coordinates of tool center and working parameters without altering cutting forces. By applying the optimized parameters to milling practice, a comparison is made to show the improved product quality. Based on these optimized parameters, a finite element method (FEM) program is used to compute deformation values of a workpiece's corner, which evidences few effects that optimized parameters can exert on the corner deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.