Abstract

In a D=2+1 quantum critical system, the entanglement entropy across a boundary with a corner contains a subleading logarithmic scaling term with a universal coefficient. It has been conjectured that this coefficient is, to leading order, proportional to the number of field components N in the associated O(N) continuum $\phi^4$ field theory. Using density matrix renormalization group calculations combined with the powerful numerical linked cluster expansion technique, we confirm this scenario for the O(2) Wilson-Fisher fixed point in a striking way, through direct calculation at the quantum critical points of two very different microscopic models. The value of this corner coefficient is, to within our numerical precision, twice the coefficient of the Ising fixed point. Our results add to the growing body of evidence that this universal term in the R\'enyi entanglement entropy reflects the number of low-energy degrees of freedom in a system, even for strongly interacting theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.