Abstract

Photorefractive keratectomy with large diameter ablations using a uniform laser beam has produced central undercorrections, or "steep central islands" in patients, as seen with videokeratography. Using a custom optical profilometer to measure corneal ablation profiles and a VISX excimer laser system, we measured the effect of ablation algorithms, diameter, depth, and dioptric correction on enucleated porcine eyes and living rabbit eyes. Our profilometer was verified using a 43.00 diopter (D) spherical surface and a 35.00 and 43.00 D bicurve test surface as a model for the ablated cornea. The profilometer measured the test surfaces to within 3 microns of predicted values. Photorefractive keratectomies showed over-ablation peripherally and under-ablation centrally which increased with ablation diameter and dioptric correction. Fixed diameter ablations 2 to 6 mm in diameter and 10 to 80 microns deep showed stromal ablation rates vary spatially but not with ablation depth. These spatially variant ablation profiles were used to re-engineer the ablation algorithm and to produce photorefractive keratectomies with improved sphericity. Steep central islands are caused by the spatial variance of tissue ablated with a uniform laser beam irradiance. This aberration can be corrected by modifying the laser ablation algorithm to correct for the spatial variance of stromal ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call