Abstract

With the increasing demand for sustainable development, the recycling and utilization of wastes has received widespread attention. This study proposed a green method of using one waste, corncob ash, to boost microbial the production of hydrogen from another waste, waste activated sludge, during anaerobic fermentation. The corncob ash dosage and the fermentative hydrogen production was positively correlated, and the maximum production of hydrogen reached up to 46.8 ± 1.0 mL/g VS, which was about 3.5 times that of the control group without corncob ash dosage (17.0 ± 0.9 mL/g VS). Mechanistic studies found that corncob ash was beneficial to the solubilization, hydrolysis and acetogenesis processes involved in fermentative hydrogen production process. The microbial community analysis indicated that corncob ash enriched more hydrolytic microorganisms (e.g., Bacteroides sp. and Leptolinea sp.), and has less impact on acidifying microorganisms, compared to the control group. The strategy of using corncob ash to boost the production of hydrogen during anaerobic waste activated sludge fermentation proposed in this study might provide a new waste-control-waste paradigm, making sludge disposal and wastewater treatment more sustainable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call