Abstract

Xanthan gum (XG) is a biopolymer obtained in fermentation and used as a rheology control agent in aqueous systems and in stabilizing emulsions and suspensions. XG, together with other polysaccharides, can form soft, cohesive composite gels. The carbon source in the fermentative process is responsible for one-third of the production costs, and the search for less expensive and sustainable alternatives is ongoing. The use of agricultural residues such as the corncob is highly suggestive due to their abundance. This study aims to evaluate the use of derived hemicellulose fractions from the alkaline extraction of corncob as a carbon source in the production of XG in trials using four strains of Xanthomonas sp. (629, 1078, 254, and S6). The results indicate that strain 629 provides the higher yield (8.37 ± 5.75 g L−1) while using a fermentation medium containing a carbon source of saccharose (1.25%), hemicellulose fractions (3.75%), and salts. In this same medium, the strain 629 produces gum in 3% aqueous solution, showing the higher apparent viscosity (9298 ± 31 mPa s−1) at a shear rate of 10 s−1 at 25 °C. In conclusion, corncob is proven to be a promising sustainable alternative carbon source in the obtention of XG, improving the economic viability of the process within a biorefinery context. Saccharose must, however, also be included in the fermentation medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.