Abstract

A human brain is a high-density neural network, which has~1011 neurons and~1015 synapses. Neuron as a basic information processing unit builds the biological neural network, and the realization of information transmission and integration depends on the synaptic connection between neurons. This information transfer and integration work is difficult to realize by relying on von Neumann computer, due to the computer only works according to the well-defined programs. To further simulate the imagery thinking of human brain neural network, the researchers begin with the information memory and processing mechanism of human brain neural network. A large number of microelectronic devices with human thinking characteristics are designed, such as memristor, atomic switch, phase change memory, and transistors. The oxide-based thin film transistor under the new material system is one of these devices, and has attracted the attention of researchers. The transistors working as the biological synapses, the gate electrode is regard as presynaptic input terminal, and the channel current is measured as postsynaptic output. Utilizing the proton gating behaviors, a series of synaptic behaviors, such as short-term and long-term memory, paired-pulse facilitation, and spike timing-dependent plasticity is mimicked successfully in these synaptic transistors.#br#With the progressing of science and technology, and the increasing of requirements for environmental protection, researchers pay more attention to the environmentally friendly solid electrolyte materials to fabricate oxide-based thin film synaptic transistor. Researchers have a major interest in starch, due to the low price, rich source, and excellent mechanical properties. Starch can be extracted from corn, potato, sweet potato and other starch-containing substances, and is generally insoluble in cold water, and gelatinized in boiling water. In this study, corn starch solid electrolyte is prepared on ITO glass by spin coating progress, and dried at a constant temperature at 30℃. The electrical performances of protonic/electronic hybrid IZO synaptic transistor gated by corn starch solid electrolyte are excellent, operation voltage, Ion/off ratio, field-effect mobility and subthreshold swing are 1.5 V, 1×107, 18.7 cm2·V-1·s-1 and 156.8 mV/dec., respectively. Due to the mobile proton migrating in corn starch solid electrolyte, the paired-pulse facilitation, learning and memory behaviors and high-pass filter of biological neural synaptic plasticity are realized successfully. The synaptic transistors have potential applications in the field of environment-friendly microelectronic devices to reduce the production costs. Therefore, the corn starch solid electrolyte gated proton/electron hybrid synaptic transistor as an artificial synapse can offer a suitable option to building the neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.