Abstract
Two experiments were conducted to evaluate the effects of maturity and mechanical processing of two hybrids of whole plant corn on starch, fiber, and ether extract digestibilities and energy content of the total mixed ration fed to lactating Holstein cows. In the first experiment, Pioneer® hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length of cut of 6.4mm. At each stage of maturity, corn was harvested with and without mechanical processing. In the second experiment, Pioneer® hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with and without mechanical processing. The theoretical length of cut was 12.7mm. The measured TDN and NEL concentrations were lower for diets containing processed corn silage in experiment 1 and greater for diets containing processed corn silage in experiment 2, compared with diets containing unprocessed corn silage. The lower energy content for diets containing processed corn silage in experiment 1 can be explained by the lower total tract NDF, ether extract, and CP digestibilities. The greater energy content for diets containing processed corn silage in experiment 2 can be attributed to greater total tract starch and NDF digestibilities for cows fed processed corn silage diets. In experiment 2, diets containing processed corn silage (1.59 Mcal/kg) had approximately 2.6% more energy available per kilogram of DM consumed compared with diets containing unprocessed corn silage (1.55 Mcal/kg). For hybrid Quanta in experiment 2, the TDN and NEL concentrations of diets containing corn silage harvested at two-thirds ML were greater than at other maturities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.