Abstract

Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13–15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip.

Highlights

  • The ability to strip-till for corn production in east central Kansas has allowed farmers to address several challenges they have faced

  • Field experiments were conducted on an Osage silty clay loam soil (Fine, smectitic, thermic Typic Epiaquerts, on 0–1% slope, land capability class IIw) near Lane, Kansas (38◦25′N 95◦07′W), in 2006 and 2008, and on a Woodson silt loam soil (Fine, smectitic, thermic Abruptic Argiaquolls, on 0–1% slope, land capability class IIs) at the East Central Kansas Experiment Field near Ottawa, Kansas (38◦32′′N 95◦14′′W), in 2009, 2010, and 2011

  • Corn early growth at the V2–V3 and V7–V8 growth stages were generally higher for corn planted directly on top of the strip-tilled fertilized rows or within 10 cm (Tables 5, 6, Figure 1)

Read more

Summary

Introduction

With the clay pan soils that are susceptible to erosion because of limited water infiltration, no-till has offered protection against soil erosion (Unger and Vigil, 1998; Lamm et al, 2009). While the layer of crop residue has offered protection against erosion, it has increased soil moisture and reduced soil temperatures, limiting the opportunities to plant corn early (Vetsch and Randall, 2002; Perez-Bidegain et al, 2007). Strip-till allows for residue to remain over much of the field to protect against erosion (Vetsch and Randall, 2002), while allowing the soil to warm and dry in the planting zone. The strip-till method allows for banding of fertilizers to save a trip across the field and to place fertilizers closer to the plants for more efficient utilization (Fernandez and White, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.