Abstract
AbstractNovel thermosetting composites have been successfully developed using glass fibers to reinforce regular corn oil (COR) and conjugated corn oil (CCOR) resins prepared by cationic copolymerization with styrene (ST) and divinylbenzene (DVB). The dependence of morphology and physical properties of the composites on the contents of glass fibers and DVB was determined by scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis and tensile testing. The glass fiber loading and polymer matrix composition play an important role in improving the mechanical properties and thermal stability of the resulting composites. As the glass fiber content increases from 0 to 45 wt %, the COR‐based composites show an increase in Young's modulus from 4.1 to 874 MPa and tensile strength from 1.7 to 8.4 MPa. Furthermore, the composites exhibit good damping properties and are suitable for applications where reduction of both unwanted noise and vibration is important. Compared with the composites from COR, the CCOR‐based composites exhibit slightly higher thermal stabilities and mechanical properties, due to higher reactivity of CCOR with comonomers. Increasing the DVB content improves the crosslink density of the polymer matrix, leading to a significant improvement in the thermal stabilities and mechanical properties of the resulting composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3345–3353, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.