Abstract
Aging is the primary cause of neurodegenerative diseases, which are mainly characterized by cognitive decline and neuropsychiatric symptoms. Corn embryo, an important component of corn kernels, contains plenty of essential nutrients and bioactive compounds. However, corn embryo is often removed in the process of refining corn. To reveal potential biological benefits of corn embryo, the present study investigated the intervention effects of corn embryo on age-related cognitive decline and neuropsychiatric symptoms. Ninety male Wistar rats were randomly divided into six groups: Control, Corn embryo, Aging model, Low-, Medium- and High-dose intervention group. Aging models induced by an intraperitoneal injection of 60 mg/kg D-galactose plus a gavage of 200 mg/kg aluminum chloride were intervened with a gavage of 0.3, 0.6 or 1 g/kg corn embryo while the Control and Corn embryo groups received saline and 0.6 g/kg corn embryo respectively. Morris water maze and open field test were performed to assess cognitive abilities and anxiety-like behaviors. Brain biochemical parameters including the malondialdehyde, glutathione, glutathione sulfhydryl transferase and γ-glutamylcysteine synthetase were detected to evaluate oxidative stress levels. The mRNA expression of brain-derived neurotrophic factor was determined to estimate neurotrophic factor levels. Besides, histopathological alterations were visualized by hematoxylin-eosin staining and neuronal apoptosis levels were measured by the immunohistochemical staining of Bax and Bcl-2. Ultimately, the mimetic aging rats showed significant cognitive impairment (n = 15, P < 0.01) and anxiety-like behaviors (n = 15, P < 0.01), increased oxidative stress (n = 5, P < 0.001), neurodegeneration (n = 5, P < 0.001) and apoptosis (n = 5, P < 0.01) and reduced neurotrophic factors (n = 5, P = 0.074) in the brain. However, corn embryo effectively prevented the above undesirable neurobehavioral alterations via attenuating oxidative stress (n = 5, P < 0.01), neurodegeneration (n = 5, P < 0.001) and apoptosis (n = 5, P < 0.01) and increasing the levels of neurotrophic factors (n = 5, P < 0.001), suggesting its strong neuroprotective effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.