Abstract
Nitrogen doping of carbon nanotubes during chemical vapor deposition synthesis can create unique stacked cup-shaped structures termed as nitrogen-doped carbon nanotube cups (NCNCs). These cups have semielliptical hollow cavities and elevated reactivity which could lead to various applications. In this work, by applying intense ultrasonication to the as-synthesized NCNCs, we demonstrated an effective mechanical method to isolate the individual cups with opened cavities from their stacks. The graphitic structures of the isolated cups and their inherent nitrogen functionalities were characterized by comprehensive microscopic and spectroscopic methods. In particular, we quantitatively determined the existence of amine functionalities on NCNCs and found that they were preferentially distributed at the open edges of the cups, providing localized reactive sites. Further, by thiolating the amine groups with 3-mercapto-propionic acid, we were able to effectively cork the isolated cups by gold nanoparticles with commensurate diameters. These cup-shaped carbon nanomaterials with controlled inner volumes and gold nanoparticle corks could find potential applications as nanoscale reaction containers or drug delivery vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.