Abstract
ABSTRACT This work assesses the use of aerial imagery for the vegetation cover characterization in cork oak woodlands. The study was conducted in a cork oak woodland in central Portugal during the summer of 2017. Two supervised classification methods, pixel-based and object-based image analysis (OBIA), were tested using a high spatial resolution image mosaic. Images were captured by an unmanned aerial vehicle (UAV) equipped with a red, green, blue (RGB) camera. Four different vegetation covers were distinguished: cork oak, shrubs, grass and other (bare soil and tree shadow). Results have been compared with field data obtained by the point-intercept (PI) method. Data comparison reveals the reliability of aerial imagery classification methods in cork oak woodlands. Results show that cork oak was accurately classified at a level of 82.7% with pixel-based method and 79.5% with OBIA . 96.7% of shrubs were identified by OBIA, whereas there was an overestimation of 21.7% with pixel approach. Grass presents an overestimation of 22.7% with OBIA and 12.0% with pixel-based method. Limitations rise from using only spectral information in the visible range. Thus, further research with the use of additional bands (vegetation indices or height information) could result in better land-cover type classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.