Abstract
As part of the tasks to improve the nuclear safety of nuclear power plants, a new program code was developed. The CORIUMSITY program code developed, considered in this work, is intended to analyze the scenario in which an accident at a nuclear power plant is simulated with the melting of the core and the formation of the so-called “corium” - a mixture of nuclear and structural materials of the nuclear reactor core, formed as a result of thermal and mechanical impact during an accident. The CORIUMSITY program code, is intended to analyze several scenarios of different accidents, include an accident with reactor core melting. The functions of this code can help in solving many urgent nuclear safety problems. One of the main methods of operation of the CORIUMSITY code algorithms is the matrix exponential method, which consists in using a matrix function of a square matrix, in which as values are used indicators corresponding to nuclides from the CORIUMSITY code database. The program implements an iterative Euler method for solving the system of levels of nuclear fuel burnup. The CORIUMSITY code was verified with benchmark data to assess the accuracy of the calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.