Abstract

The effect of the Coriolis interaction upon the sharing of energy between rotational and vibrational excitation during an electronic transition is considered with particular emphasis on recoil-induced excitation during photoionization. If there is a large change in equilibrium bond length upon ionization, then Coriolis coupling leads to a significant transfer of energy between rotational and vibrational excitation. Experimental results for valence ionization of ${\mathrm{N}}_{2}$ and CO and for carbon $1s$ ionization of CO show evidence of this effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.