Abstract

Coronal Mass Ejections (CMEs) are immense eruptions of plasma and magnetic fields that are propelled outward from the Sun, sometimes with velocities greater than 2000 km/s. They are responsible for some of the most severe space weather at Earth, including geomagnetic storms and solar energetic particle (SEP) events. We have developed CORHEL-CME, an interactive tool that allows non-expert users to routinely model multiple CMEs in a realistic coronal and heliospheric environment. The tool features a web-based user interface that allows the user to select a time period of interest, and employs Regularized Biot-Savart Law (RBSL) flux ropes to create stable and unstable pre-eruptive configurations within a background global magnetic field. The properties of these configurations can first be explored in a zero-beta magnetohydrodynamic (MHD) model, followed by complete CME simulations in thermodynamic MHD, with propagation out to 1 AU. We describe design features of the interface and computations, including the innovations required to efficiently compute results on practical timescales with moderate computational resources. CORHEL-CME is now implemented at NASA's Community Coordinated Modeling Center (CCMC) using NASA Amazon Web Services (AWS). It will be available to the public in early 2024.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call