Abstract
MPSoCs with hierarchical communication infrastructures are promising architectures for low power embedded systems. Multiple CPU clusters are coupled using an Network-on-Chip (NoC). Our CoreVA-MPSoC targets streaming applications in embedded systems, like signal and video processing. In this work we introduce a tightly coupled shared data memory to each CPU cluster, which can be accessed by all CPUs of a cluster and the NoC with low latency. The main focus is the comparison of different memory architectures and their connection to the NoC. We analyze memory architectures with local data memory only, shared data memory only, and a hybrid architecture integrating both. Implementation results are presented for a 28 nm FD-SOI standard cell technology. A CPU cluster with shared memory shows similar area requirements compared to the local memory architecture. We use post place and route simulations for precise analysis of energy consumption on both cluster and NoC level using the different memory architectures. An architecture with shared data memory shows best performance results in combination with a high resource efficiency. On average, the use of shared memory shows a 17.2 percent higher throughput for a benchmark suite of 10 applications compared to the use of local memory only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.