Abstract
Core/shell-structured nanocapsules consisting of a nickel cobaltite (NiCo2O4) nanoparticle core encapsulated in an onion-like carbon (C) shell are synthesized by arc-discharge and air-annealing methods. Void spaces between NiCo2O4 core and the carbon shell are observed in the NiCo2O4/C nanocapsules. Lithium-ion batteries fabricated using the nanocapsules as the anode material exhibit enhanced initial coulombic efficiency of 82.3% and specific capacity of 1197.2mAh/g after 300 cycles at 0.2Ag−1 current density. Varying the rate of charge/discharge current from 0.2 to 4A/g does not show negative effects on the recycling stability of the nanocapsules and a recoverable specific capacity as high as 1270.4mAh/g is obtained. The introduction of the onion-like C shell and the presence of the void spaces are found to increase the contact areas between the electrolyte and the nanocapsules for improved electrolyte diffusion, to enhance the electronic conductivity and ionic mobility of the NiCo2O4 nanoparticle cores, and to accommodate the change in volume during the lithium-ion insertion/extraction process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.