Abstract

The silicon coated Carbon nanotubes (CNTs) nanocomposite (CNTs@Si) with a shell structure was successfully synthesized by a simple chemical vapor deposition (CVD) method. In this work, the CNTs@Si is not only introduced as a structural material providing oxidation performance, but also as an extremely effective electromagnetic wave (EMW) absorption nanocomposite. Dielectric characteristics EMW absorption properties within the frequency range of 2–18 GHz of CNTs@Si were studied, and the oxidation resistance of CNTs@Si was characterized. Due to the dense space conductive network formed by CNTs, the EMW absorbing properties of CNTs@Si nanocomposite features excellent electromagnetic wave absorption capacity at a filling amount of 1%. The maximum reflection loss (RL) reaches −61.57 dB at the thickness of 1.8 mm, and a wide effective absorption bandwidth (EAB, RL < −10 dB) of 2.88 GHz is achieved. The obtained CNTs@Si core-shell nanocomposites exhibit excellent antioxidant performance and absorbing performance due to silicon bridging. Efficient electromagnetic wave absorption and excellent oxidation resistance of CNTs@Si can be regarded as a brand-new competitive candidate for EMW absorption materials in harsh environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call