Abstract

Dye-doped silica nanoparticles (C dots) were synthesized in reverse microemulsions and used to quantitatively examine DNA cleavage in the presence of transition metal ions. The cores were synthesized as fluorescein isothiocyanate (FITC)-doped silica nanoparticles and the shells' surfaces were modified with single-stranded DNA oligomers tagged with Cy5 fluorophores. DNA cleavage induced by heavy metal ions was estimated by comparing the fluorescence of Cy5 before and after reaction with metal ions. For this, a lab-built laser-induced fluorescence microscope equipped with a charge coupled device (CCD) camera, for imaging, and photomultiplier tube, for photon counting, was used. FITC fluorescence from the core was measured as an internal standard to compensate for possible loss of the beads during the treatment. The cleavage of DNA in air in the presence of Pb(2+), Cd(2+), and Hg(2+) at 1 ng/mL was found to be 14%, 6%, and 20%, respectively, and was significantly reduced to below 9% under N(2) gas, indicating that the main cleavage source was oxygen in air. The most significant DNA cleavage was observed with the addition of hydrogen peroxide. This analytical method using dye-doped C dots provided convenient handling and quantification of the estimation of metal-DNA interaction with a detection limit of 34.9 pmol/mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.