Abstract
Poly(lactic-co-glycolic acid) (PLGA)/collagen nanofibrous scaffolds have been utilized in the tissue engineering field. It has been shown that both fibronectin (FN) and cadherin 11 (CDH) play important roles in the progress of osteogenesis and cell adhesion. The aim of this study was to fabricate recombinant FN/CDHs (rFN/CDHs)-loaded PLGA/collagen nanofibrous scaffolds and evaluate their effects on the adhesion and differentiation of human bone marrow mesenchymal stem cells (hMSCs). PLGA/collagen nanofibers were made by coaxial electrospinning. The morphology and mechanical properties of PLGA/collagen nanofibrous mats were analyzed by scanning electron microscopy and mechanical testing, respectively. The performance of scaffolds was evaluated in terms of the viability, morphology, and osteogenic gene expression levels of hMSCs. rFN/CDHs was successfully incorporated into the PLGA/collagen nanofibers. The release of rFN/CDHs from PLGA nanofibers was investigated by liquid chromatography–mass spectrometry. rFN/CDHs improved the mechanical properties of the PLGA/collagen nanofibers. The controlled release of rFN/CDHs can enhance the proliferation of hMSCs and induce osteogenic gene expression (alkaline phosphatase, RUNX2, and osteocalcin). Our data imply that rFN/CDHs may induce hMSCs differentiation into osteoblasts and PLGA/collagen nanofibers loaded with rFN/CDHs have potential in bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.