Abstract

Nickel sulfides, as promising candidate for aqueous rechargeable battery, have aroused broad attention on account of abundant natural resources, rich phases, moderate price and high theoretical capacity. Nevertheless, tremendous volume expansion during repeated charging-discharging procedure leads to the poor rate capability and cycling stability of nickel sulfide electrodes. Therefore, in this work, core–shell NiS2@C encapsulated by thin hydrothermal carbon (HC) layer (NiS2@C/HC) has been designed and prepared without any surfactants or templates assistance, which avoid tedious process and shorten preparation cycle greatly. When matched with the treated iron powder (TIP) electrode to form NiS2@C/HC//TIP aqueous rechargeable battery, the NiS2@C/HC//TIP battery exhibits a high discharge capacity of 205.1 mAh g−1 at 1 A g−1, remarkable rate ability (176.4 mAh g−1 at 5 A g−1, about 86% capacity conversation) and superiorly durable stability (80.8 % capacity retention after 10,000 cycles at ultra-high current density of 15 A g−1). The outstanding high-rate capability and cycling stability for aqueous rechargeable battery can be ascribed to the distinct cowpea-like architecture and intrinsic properties of NiS2@C/HC. Specifically, the interior porous carbon provides a space to tolerate the volume expansion of the NiS2 nanoparticles and prevent NiS2 nanoparticles from aggregation, guaranteeing its high-rate capability. Meanwhile, the exterior HC layer is conducive to improve the electric conductivity to facilitate the electrons transfer and promote the mechanical strength of the whole active materials, ensuring its robust cycling stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call