Abstract

The functional consequences of the interaction of transcriptional coregulators with the human thyroid hormone receptor (TR) in mammalian cells are complex. We have used the yeast, Saccharomyces cerevisiae, which lack endogenous nuclear receptors (NRs) and NR coregulators, as a model to decipher mechanisms regulating transcriptional activation by TR. In effect, this system allows the reconstitution of TR mediated transcription complexes by the expression of specific combinations of mammalian proteins in yeast. In this yeast system, human adenovirus 5 early region 1A (E1A), a natural N-CoR splice variant (N-CoRI) or an artificial N-CoR truncation (N-CoRC) coactivate unliganded TRs and these effects are inhibited by thyroid hormone (TH). E1A contains a short peptide sequence that resembles known corepressor-NR interaction motifs (CoRNR box motif, CBM), and this motif is required for TR binding and coactivation. N-CoRI and N-CoRC contain three CBMs, but only the C-terminal CBM1 is critical for coactivation. These observations in a yeast model system suggest that E1A and N-CoRI are naturally occurring TR coactivators that bind in the typical corepressor mode. These findings also raise the possibility that alternative splicing events which form corepressor proteins containing only C-terminal CBM motifs could represent a novel mechanism in mammalian cells for regulating constitutive transcriptional activation by TRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.