Abstract

The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.

Highlights

  • Isoprene (2-methyl-1,3-butadiene) is an important commodity due to its use as an aviation fuel and as a platform chemical for synthetic chemistry

  • To identify changes in gene expression that correspond to altered isoprene production, we screened for conditions that either increase or decrease isoprene production in B. subtilis strain DSM10

  • We identified eight conditions that altered the rate of isoprene production in wild type B. subtilis

Read more

Summary

Introduction

Isoprene (2-methyl-1,3-butadiene) is an important commodity due to its use as an aviation fuel and as a platform chemical for synthetic chemistry. Renewable methods for producing isoprene are being investigated to meet product demand and reduce the environmental impact of current production methods, which involve petroleum cracking [1,2]. To this end, methods for large scale production of isoprene from a microbial host are being explored as cleaner sources of raw material [3]. Given the importance of these compounds in cell physiology and its utility as an industrial product, there is great interest in understanding the regulation of the enzymes that control the metabolism of these compounds

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.