Abstract

A significant problem in diffusion MRI (dMRI) is the lack of understanding regarding which microstructural features account for the variability in the diffusion tensor imaging (DTI) parameters observed in meningioma tumors. A common assumption is that mean diffusivity (MD) and fractional anisotropy (FA) from DTI are inversely proportional to cell density and proportional to tissue anisotropy, respectively. Although these associations have been established across a wide range of tumors, they have been challenged for interpreting within-tumor variations where several additional microstructural features have been suggested as contributing to MD and FA.To facilitate the investigation of the biological underpinnings of DTI parameters, we performed ex-vivo DTI at 200 µm isotropic resolution on sixteen excised meningioma tumor samples. The samples exhibit a variety of microstructural features because the dataset includes meningiomas of six different meningioma types and two different grades. Diffusion-weighted signal (DWI) maps, DWI maps averaged over all directions for given b-value, signal intensities without diffusion encoding (S0) as well as DTI parameters: MD, FA, in-plane FA (FAIP), axial diffusivity (AD) and radial diffusivity (RD), were coregistered to Hematoxylin & Eosin- (H&E) and Elastica van Gieson-stained (EVG) histological sections by a non-linear landmark-based approach.Here, we provide DWI signal and DTI maps coregistered to histology sections and describe the pipeline for processing the raw DTI data and the coregistration. The raw, processed, and coregistered data are hosted by Analytic Imaging Diagnostics Arena (AIDA) data hub registry, and software tools for processing are provided via GitHub. We hope that data can be used in research and education concerning the link between the meningioma microstructure and parameters obtained by DTI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.