Abstract
Summary Elastic wave velocities are commonly used to predict porosity, mineralogy, and lithology from formation properties. When only P-wave sonics are available in historical wells, systematics for predicting shear velocities are useful for developing elastic models. Although much research has been done on conventional reservoir velocity systematics, the equivalency for unconventional formations is still a work in progress. There has also been a limited number of research studies with laboratory measures published. Using laboratory pulse transmission ultrasonic data, we created a Vp-Vs systematic for the Meramec Formation in this study. The effects of porosity and mineralogy on velocities are explored, as well as a comparison of Meramec velocity systematics with well-established literature systematics. Vp and Vs measurements were taken on 385 dodecane-saturated core samples from seven Meramec wells (106 vertical and 279 horizontal plugs). S-wave and P-wave anisotropy in Meramec Formation samples used in this study are typically less than 10%. Each sample was also tested for porosity and mineralogy. We find that velocities are more sensitive to porosity than mineralogy by a factor of 10. Below are our equations for predicting Vp and Vs (in km/s), when only clay content and porosity are known. In these equations, φ is the volume fraction pores, and Clays is the weight fraction of clay. These equations are for those samples in which there is low P-wave and S-wave anisotropies:(1)Vp=6.4−1.2*Clays−15.4*φ(R2=0.5),(2)Vs=3.6−0.5*Clays−5.2*φ(R2=0.4). We suggest two methods for calculating Vs from Vp: Ignoring anisotropy, we combined both Vp and Vs measurements from all vertical plugs and low anisotropy horizontal plugs to create a single shear wave predictor; and considering anisotropy, Vp measurements from horizontal plugs were corrected using Thomsen’s compressional wave anisotropy parameter, after which a shear velocity predictor was generated. The shear wave predictors for dodecane-saturated measurements are as follows (all velocities are km/s):(3)Method 1: Vs= 0.90 + 0.42*Vp (R2=0.7),(4)Method 2: Vs= 0.80 + 0.45*Vp (R2=0.6). The residual and estimated error in Eq. 3 is slightly less than in Eq. 4. Even though there is a significant variance in measurement frequency, the Meramec velocity systematic shows good agreement with dipole wireline measurements using the first equation. The Meramec velocity systematics differ significantly from previously published systematics, such as the trend line by Greenberg and Castagna (1992) and the shale trend line by Vernik et al. (2018). Using the correlations by Greenberg and Castagna (1992) for limestone or dolomite, the shear velocities of the samples in this study cannot be predicted. These data have yielded shear wave systematics, which can be used in wireline and seismic investigations. The results suggest that the method of ignoring anisotropy yields a better Vs estimate than the one that takes anisotropy into account. Using well-established shear wave velocity systematics from the published literature can result in an estimated inaccuracy of greater than 16%. It is important to calibrate velocity systematics to the target formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.