Abstract

Agarose-based anion-exchangers (e.g. quaternary amine, Q) have been widely used in monoclonal antibody flow-through purification to remove trace levels of impurities. Such media are often packed in a large column and the operation is usually robust but with limited throughput due to the compressibility of agarose and consequentially low bed permeability. In order to address this limitation, cored Q beads consisting of a rigid core and a thin agarose gel coating were developed and evaluated for protein flow-through chromatography. Using laboratory-scale columns it was found that, the cored beads indeed provide significantly enhanced rigidity and flow permeability relative to conventional homogeneous agarose resins. Depending on the structure and size of the cored beads, the permeability was 2–4-fold higher than that of a commonly used commercial agarose resin. Good virus and host cell protein clearance was achieved with the cored Q beads even at increased flow velocities. In addition, the impermeable core allows for more efficient use of buffers without loss of useful capacity in polishing applications. Process analyses based upon the experimental data demonstrated that the enhanced permeability achieved with the cored beads can significantly improve process throughput and economics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call