Abstract
We present a spherically symmetric, core-collapse model of SNR RX J1713.7-3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration (DSA). High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated ISM behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 Msun shell or cloud. If the SNR is interacting with a much larger mass >10^4 Msun, pion-decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10^4 Msun pion-decay scenario highly unlikely for SNR RX J1713.7-3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.