Abstract

Genotypic Tropism Testing (GTT) tools are generally developed based on HIV-1 subtype B (HIV-1B) and used for HIV-1C as well but with a large discordance of prediction between different methods. We used an established phenotypic assay for comparison with GTT methods and for the determination of in vitro maraviroc sensitivity of pure R5-tropic and dual-tropic HIV-1C. Plasma was obtained from 58 HIV-1C infected Ethiopians. Envgp120 was cloned into a luciferase tagged NL4-3 plasmid. Phenotypic tropism was determined by in house method and the V3 sequences were analysed by five GTT methods. In vitro maraviroc sensitivity of R5-tropic and dual-tropic isolates were compared in the TZMbl cell-line. The phenotypes were classified as R5 in 92.4% and dual tropic (R5X4) in 7.6% of 79 clones. The concordance between phenotype and genotype ranged from 64.7% to 84.3% depending on the GTT method. Only 46.9% of the R5 phenotypes were predicted as R5 by all GTT tools while R5X4 phenotypes were predicted as X4 by four methods, but not by Raymond's method. All six tested phenotypic R5 clones, as well as five of six of dual tropic clones, showed a dose response to maraviroc. There is a high discordance between GTT methods, which underestimates the presence of R5 and overestimates X4 strains compared to a phenotypic assay. Currently available GTT algorithms should be further improved for tropism prediction in HIV-1C. Maraviroc has an in vitro activity against most HIV-1C viruses and could be considered as an alternative regimen in individuals infected with CCR5-tropic HIV-1C viruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call