Abstract

Herein, core-twisted tetrachloroperylenediimides (ClPDIs) were introduced as new efficient electron-transporting materials (ETMs) to replace the commonly used fullerene acceptor PC61 BM in inverted planar perovskite solar cells (PSCs). ClPDI showed a low-lying lowest unoccupied molecular orbital (LUMO) energy level of -3.95 eV, which was compatible with the conduction band of CH3 NH3 PbI3-x Clx (-3.90 eV). In addition, the role of the length of the alkyl side chain at the imide position of ClPDI in modulating the molecular solubility, aggregation capacity for charge-transport properties, surface hydrophobicity, and PSC performance was investigated. The device based on ClPDI-C4 (ClPDI with n-butyl side chains) as ETM achieved a maximum power conversion efficiency (PCE) of 17.3 % under standard AM 1.5G illumination, which iwas very competitive with that of the reference device employing PC61 BM/C60 (PCE=17.2 %) as ETM. Moreover, the devices with ClPDIs as ETMs exhibited better device stability than that with PC61 BM/C60 . This work highlights the great potential of ClPDI derivatives as low-cost (≈2.0 USD g-1 ) and effective ETMs to obtain efficient solution-processed inverted PSCs. This class of ClPDI derivatives is expected further promote the performance and stability of PSCs after extended investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call