Abstract

A series of metallo Ru(ii), Fe(ii), Co(ii) bisterpyridine polymers were prepared with naphthalene diimide (NDI) groups inserted between two 4'-phenyl-2,2:6',2''-terpyridine (phtpy) groups. Core-substituted NDIs typically have long-lived excited states with relatively high quantum yields, yet the NDI emission in these metallopolymers was completely quenched, most likely because of efficient electron-transfer from the M(phtpy)2(2+) groups to the excited NDIs. AFM, TEM and SEM experiments indicate that the regiochemistry of the substitution on the core of the naphthalene diimide, together with coordination of the terpyridine ligand to different metals, strongly influences the morphologies of the resulting metallosupramolecular polymers. The morphologies of spin-coated samples of the para-substituted polymers revealed the formation of long, bundled nanorods. Lengths on the order of ∼8 μm were observed for the bundle of the longest polymers (-Ru) by both AFM and TEM microscopy. The morphologies of the meta substituted polymers, on the other hand, exhibited significantly shorter and less well-defined morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.