Abstract

We demonstrate the realization of core-shell transformation-imprinted solder bumps to enable low-temperature chip assembly, while providing a route to high-temperature interconnects through transformation. The reported core-shell solder bump uses a lower melting point BiIn-based shell and a higher melting point Sn core in the initial stage. The bumps enable fluidic self-assembly and self-alignment at relatively low temperatures (60-80 °C). The bumps use the high surface free energy of the liquid shell during the self-assembly to capture freely suspended Si dies inside a heated (80 °C) water bath, leading to well-ordered defect-free chip arrays; the molten liquid shell wets the metal contact (binding site) on the chips and yields self-aligned and electrically connected devices. The solid core provides the anchor point to the substrate. After the completion of the assembly, a short reflow raises the melting point, yielding a solid electrical connection. The low melting point liquid diffuses into the high melting point core. The tuning of the material ratios leads to tailored transformation-imprinted solders with high melting points (160-206 °C) in the final structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.