Abstract

The sluggish redox kinetics and shuttle effect seriously impede the large application of room-temperature sodium-sulfur (RT Na-S) batteries. Designing effective catalysts into cathode material is a promising approach to overcome the above issues. However, considering the multistep and multiphase transformations of sulfur redox process, it is impractical to achieve the effective catalysis of the entire S8 →Na2 Sx →Na2 S conversion through applying a single catalyst. Herein, this work fabricates a nitrogen-doped core-shell carbon nanosphere integrated with two different catalysts (ZnS-NC@Ni-N4 ), where isolated Ni-N4 sites and ZnS nanocrystals are distributed in the shell and core, respectively. ZnS nanocrystals ensure the rapid reduction of S8 into Na2 Sx (4<x≤8), while Ni-N4 sites realize the efficient conversion of Na2 Sx into Na2 S, bridged by the diffusion of Na2 Sx from the core to shell. Besides, Ni-N4 sites on the shell can also induce an inorganic-rich cathode-electrolyte interface (CEI) on ZnS-NC@Ni-N4 to further inhibit the shuttle effect. As a result, ZnS-NC@Ni-N4 /S cathode exhibits an excellent rate-performance (650 mAh g-1 at 5 A g-1 ) and ultralong cycling stability for 2000 cycles with a low capacity-decay rate of 0.011% per cycle. This work will guide the rational design of multicatalysts for high-performance RT Na-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call