Abstract

Hierarchically ordered materials with core/shell structures were synthesized through a layer-by-layer approach. The novel microporous/mesoporous hybrid materials were composed of a TS-1 zeolite particle for the core and mesoporous silica for the shell. The as-synthesized TS-1 crystals were modified with polydiallyldimethylammonium chloride to make their external surface positively charged, which induced an oriented self-assembly of tetraethoxysilane (TEOS) with cetyltrimethyl ammonium bromide on the TS-1 particle surface to form a shell of mesophase silica. The thickness of the mesoporous silica shell was controlled to be in the range 30–55 nm by changing the amount of TEOS added in the synthesis. The mesoporous channels in the shell were perpendicular to the zeolite core, which made the micropores inside the core accessible from the outside through the mesopores. Taking advantage of the confining effect of the mesopores, Au nanoparticles were incorporated into the shell, resulting in bifunctional catalysts which were more selective than conventional Au/TS-1 catalysts in the direct epoxidation of propylene to propylene oxide with H2 and O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.