Abstract

Si‐based materials are taken into consideration as suitable anode materials for lithium‐ion (Li‐ion) batteries due to their high specific capacity. However, their cycle life is limited due to high volumetric changes during discharging and charging in Li‐ion battery (LIB). Silica (SiO2) is abundantly present in nature, but standalone delivers moderate Li storage capacity. Commercially, graphite is considered as efficient anode in LIB. The current research focuses on improving the performance of silica as anode material to achieve the best specific capacity of LIBs. Herein, the core‐shell‐structured silica/porous carbon composite (50:50, wt%) is synthesized using a hydrothermal method. The shell of porous carbon not only covers the core silica but also provides a very high surface area of ≈1057 m2 g−1 to the composite. The synthesized silica/porous carbon composite acts as an active anode material in Li‐ion half‐cell, which shows the best specific capacity of ≈642 mAh g−1 at 700 cycles at 100 mA g−1 current density and a high capacity retention of ≈97%. The porous carbon on silica helps in the uniform percolation of the electrolyte. It also provides a conducting path to the electrons and further reduces Li‐ion diffusion time by producing more active sites. The shell of porous carbon on core‐silica helps to suppress the volumetric changes that happen during the lithiation and de‐lithiation process. Due to these advantages, the core‐shell‐structured silica/porous carbon composite anode shows consistent and stable cycling performance over large number of cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.