Abstract

Double hydrophilic copolymers (PEG-b-PCDs) with one PEG block and another block containing β-cyclodextrin (β-CD) units were synthesized by macromolecular substitution reaction. Via a dialysis procedure, complex assemblies with a core–shell structure were prepared using PEG-b-PCDs in the presence of a hydrophobic homopolymer poly(β-benzyl l-aspartate) (PBLA). The hydrophobic PBLA resided preferably in the cores of assemblies, while the extending PEG chains acted as the outer shell. Host-guest interaction between β-CD and hydrophobic benzyl group was found to mediate the formation of the assemblies, where PEG-b-PCD and PBLA served as the host and guest macromolecules, respectively. The particle size of the assemblies could be modulated by the composition of the host PEG-b-PCD copolymer. The molecular weight of the guest polymer also had a significant effect on the size of the assemblies. The assemblies prepared from the host and guest polymer pair were stable during a long-term storage. These assemblies could also be successfully reconstituted after freeze-drying. The assemblies may therefore be used as novel nanocarriers for the delivery of hydrophobic drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.