Abstract

Core-shell structured magnetic covalent-organic frameworks (Fe3O4@TaTp) were facilely synthesized based on one-step functionalization at room temperature and applied for magnetic solid-phase extraction of okadaic acid from seawater and shellfish prior to LC-MS/MS detection. Parameters, including adsorbent amount, extraction time, desorption solution, and desorption time which could affect the extraction efficiency, were respectively investigated. The developed methods demonstrated good linearity (R2 > 0.99), acceptable accuracy and good precision (<15%), and low limit of detection (0.5 pg·mL−1 for seawater and 0.04 µg·kg−1 for shellfish). The amount of the material used (1 mg for seawater and 5 mg for shellfish) and the time required (4 min for seawater and 15 min for shellfish) for extracting analyte from 5 mL of seawater and 2 g of shellfish are both greatly shortened compared with the previous reports. In addition, we successfully applied this method to real sample analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.