Abstract
Multifunctional core-shell hybrids formed by integration of metal-organic framework (MOF) and functional materials have attracted extensive attention as promising theranostic nanoplatforms due to their combined novel properties and enhanced therapeutic efficacy. Recently, the second near-infrared (NIR-II, 1000–1700 nm) laser-induced photothermal therapy (PTT) as compared to the NIR-I(700–950 nm) laser-induced PTT has displayed improved therapeutic effects owing to its merits that include deeper tissue penetration and increased maximum permissible exposure. Herein, a novel core-shell hollow copper sulfide@metal−organic framework (HCuS@MIL-100) has been successfully fabricated by a layer-by-layer technique for the first time and their collective theranostic effects are investigated in vitro and in vivo. In this platform, the inner HCuS was applied as the NIR-II photothermal agent with excellent NIR-II absorption feature, leading to impressive photothermal effects under irradiation by 1064 nm light. With MIL-100 as the shell, HCuS@MIL-100 not only displayed optimal biocompatibility but also presented superior T2 magnetic resonance imaging (MRI) ability. In the current study multifunctional hollow core-shell HCuS@MIL-100 are fabricated for the MRI-guided PTT. This study also offers a facile and effective strategy for the development of novel theranostic platforms with high efficiency through the integration of MOFs and functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.