Abstract
The present work details the development of a core-shell model for the purposes of obtaining potential-derived point charges from the ab initio molecular electrostatic potential. In contrast to atomic point charge models, the core-shell model decomposes all atoms into a core with static charge located at a fixed atomic position and a shell with variable charge and position. The optimization of shell charges and positions is discussed. The core-shell model was found to significantly improve description of the ab initio electrostatic potential when compared to potential-derived net atomic point charge models as well as distributed multipoles with contributions up to atomic quadrupole moments. The core-shell model was found to produce similar results as the Weller-Williams lone-pair model and differences in the implementation of the models are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.