Abstract

Reducing sulfur poisoning is significant for maintaining the catalytic efficiency and durability of heterogeneous catalysts. We screened PdAu nanoclusters with specific Pd : Au ratios based on Monte Carlo simulations and then carried out density functional calculations to reveal how to reduce sulfur poisoning via alloying. Among various nanoclusters, the core-shell structure Pd13Au42 (Pd@Au) exhibits a low adsorption energy of SO2 (-0.67 eV), comparable with O2 (-0.45 eV) and lower than CO (-1.25 eV), thus avoiding sulfur poisoning during the CO catalytic oxidation. Fundamentally, the weak adsorption of SO2 originates from the negative d-band center of the shell and delocalized charge distribution near the Fermi level, due to the appropriate charge transfer from the core to shell. Core-shell nanoclusters with a different core (Ni, Cu, Ag, Pt) and a Pd@Au slab model were further constructed to validate and extend the results. These findings provide insights into designing core-shell catalysts to suppress sulfur poisoning while optimizing catalytic behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.