Abstract

Three dimensional (3D) hierarchical NiCo2O4 nanosheet arrays (NSAs)@ZnWO4 nanoflakes (NFs) core–shell structures have been successfully grown on a carbon cloth (CC) using two-step hydrothermal approach, following a heat treatment route. Compared with the pure CC@NiCo2O4 NSAs electrode, the binder-free CC@NiCo2O4@ZnWO4 hybrid system gives rise to a higher specific capacitance of 872.0 Fg−1 at a low current density of 1 Ag−1 and 791.1 Fg−1 at a quite high current density of 20 Ag−1, and retains ~ 92.9% of the initial capacitance even after 5000 cycles of charge and discharge. The excellent electrochemical performance of CC@NiCo2O4@ZnWO4 electrode is attributed to its high specific surface area of the 3D structures, fast electron transport property of NiCo2O4 material as the skeleton, and the synergistic effect between NiCo2O4 and ZnWO4 materials, demonstrating that CC supported NiCo2O4 NSAs@ZnWO4 NFs composite as the high-performance electrode materials are highly desirable for the application of flexible supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.