Abstract

This study designs a novel nanoparticle system with core-shell structure based on pullulan and poly(β-amino) ester (PBAE) for the hepatoma-targeted codelivery of gene and chemotherapy agent. Plasmid DNA expressing green fluorescent protein (pEGFP), as a model gene, was fully condensed with cationic PBAE to form the inner core of PBAE/pEGFP polycomplex. Methotrexate (MTX), as a model chemotherapy agent, was conjugated to pullulan by ester bond to synthesize polymeric prodrug of MTX-PL. MTX-PL was then adsorbed on the surface of PBAE/pEGFP polycomplex to form MTX-PL/PBAE/pEGFP nanoparticles with a classic core-shell structure. MTX-PL was also used as a hepatoma targeting moiety, because of its specific binding affinity for asialoglycoprotein receptor (ASGPR) overexpressed by human hepatoma HepG2 cells. MTX-PL/PBAE/pEGFP nanoparticles realized the efficient transfection of pEGFP in HepG2 cells and exhibited significant inhibitory effect on the cell proliferation. In HepG2 tumor-bearing nude mice, MTX-PL/PBAE/pEGFP nanoparticles were mainly distributed in the tumor after 24 h postintravenous injection. Altogether, this novel codelivery system with a strong hepatoma-targeting property achieved simultaneous delivery of gene and chemotherapy agent into tumor at both cellular and animal levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call