Abstract

Recent research places significant importance on the development of innovative nanocomposites for photoelectrochemical applications. This paper presents the fabrication, characterization, and possible photoelectrochemical applications of novel ZnFe2O4/ZnO core-shell nanofibers. These core-shell nanofibers were fabricated through co-axial electrospinning using PVP solutions containing iron and zinc nitrate precursors for the core and shell. The structural and optical properties of ZnFe2O4/ZnO core-shell nanofibers were examined through TEM, SEM, XRD, FTIR, Raman spectroscopy, and diffuse reflectance spectroscopy. This comprehensive analysis unveiled that the development of core and shell characteristics was notably influenced by the interdiffusion of [Fe]/[Zn] during the annealing process. The photoelectrochemical properties of ZnFe2O4/ZnO core-shell nanofibers were assessed through electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and the Mott-Schottky method. These core-shell nanofibers demonstrated a robust electrochemical response to visible light. Photocurrent and photoconversion efficiency of the core-shell nanofibers were calculated and compared with the corresponding values for core-shell nanoparticles. The mechanisms underlying the structural, optical, and photoelectrochemical properties of ZnFe2O4/ZnO core-shell nanofibers were discussed. These advanced nanofibers hold potential applications in photocatalysis, photovoltaics, and energy storage, making this research timely and crucial for advancing sustainable energy technologies and environmental remediation efforts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call